MATH4230 Optimization Theory (2017/18) Tutorial 3

Please do the star problem (*) in tutorial class and finish the rest after class. Please hand in your answer sheet to the assignment box in Lady Shaw Building before 6:30 p.m.

1^{*}. Let X be a nonempty convex subset of \Re^n , let $f: X \to \Re^n$ be a concave function, and let X^{*} be the set of vectors where f attains a minimum over X, i.e.,

$$X^* = \{x^* \in X | f(x^*) = inf_{x \in X} f(x)\}.$$

Show that if there exist $x_0 \in X^*$, $x_0 \in ri(X)$, then $f \equiv C$ on X, where C is a constant.

Solution 1. Let $x^* \in X^* \bigcap ri(X)$, and let x be any vector in X. By the Prolongation Lemma, there exists a $\gamma \geq 0$ s.t.

$$\hat{x} = x^* + \gamma(x^* - x) \in X.$$

Hence,

$$x^* = \frac{1}{\gamma + 1}\hat{x} + \frac{\gamma}{\gamma + 1}x.$$

By the concavity of f, we have

$$f(x^*) \ge \frac{1}{\gamma+1}f(\hat{x}) + \frac{\gamma}{\gamma+1}f(x),$$

and using $f(\hat{x}) \ge f(x^*), f(x) \ge f(x^*)$, this shows that $f(x) = f(x^*)$.

- 2^* . Let C be a nonempty convex set. Show that
 - (a) cl(C) = cl(ri(C)).
 - (b) ri(C) = ri(cl(C)).
 - (c) Let \bar{C} be another nonempty convex set. Then the following three conditions are equivalent:
 - (i) C and \overline{C} have the same relative interior.
 - (ii) C and \overline{C} have the same closure.
 - (iii) $ri(C) \subset \overline{C} \subset cl(C)$.

Solution 2. (a) Since $ri(C) \subset C$, we have $cl(ri(C)) \subset cl(C)$. Conversely, let $\hat{x} \in cl(C)$. We will show that $\hat{x} \in cl(ri(C))$. Let $x \in ri(C)$ be any point(the existence is ensured by Noemptiness of Relative Interior), and assume $\hat{x} \neq x$ (otherwise we are done). By the Line Segment Principle, we have

$$\alpha x + (1 - \alpha)\hat{x} \in ri(C), \forall \alpha \in (0, 1].$$

Thus, \hat{x} is the limit of the sequence

$$\{x_k = \frac{1}{k}x + (1 - \frac{1}{k})\hat{x}|k = 1, 2, 3\dots\}$$

that lies in ri(C), so $\hat{x} \in cl(ri(C))$.

(b) The inclusion $ri(C) \subset ri(cl(C))$ follows from the definition of a relative interior point and the fact af f(C) = aff(cl(C)) (the proof of this is left for the reader). To prove the reverse inclusion, let $z \in ri(cl(C))$. We will show that $z \in ri(C)$. There exists an $x \in ri(C)$. We may assume that $x \neq z$ (Otherwise we are done). We use the Prolongation Lemma to choose $\gamma \geq 0$, with γ sufficiently close to 0 so that the vector

$$y = z + \gamma(z - x) \in cl(C).$$

Then we have

$$z = (1 - \alpha)x + \alpha y$$

where $\alpha = \frac{1}{\gamma+1} \in (0,1)$, so by the Line Segment Principle (applied within the set C), we obtain $z \in ri(C)$.

(c) We prove this equivalence argument by the following steps: $i \rightarrow ii : part (a)$. $ii \rightarrow i : part (b)$. $i, ii \rightarrow iii obviously$. $iii \rightarrow ii Suppose the condition iii holds$. Then by taking closures, we have $cl(ri(C)) \subset (\bar{C}) \subset cl(C)$, and by using part (a), we obtain $cl(C) \subset cl(\bar{C}) \subset cl(C)$. Hence $cl(\bar{C}) = cl(C)$.

- 3. Let X be a nonempty set. Show that:
 - (a) X, conv(X), and cl(X) have the same affine hull.
 - (b) cone(X) = cone(conv(X)).
 - (c) $\operatorname{aff}(\operatorname{conv}(X)) \subset \operatorname{aff}(\operatorname{cone}(X))$. Give an example where the inclusion is strict, i.e., $\operatorname{aff}(\operatorname{conv}(X))$ is a strict subset of $\operatorname{aff}(\operatorname{cone}(X))$.
 - (d) If the origin belongs to conv(X), then aff(conv(X)) = aff(cone(X)).

Solution 3.

(a) We first show that X and cl(X) have the same affine hull. Since $X \subset cl(X)$, there holds

$$\operatorname{aff}(X) \subset \operatorname{aff}(\operatorname{cl}(X)).$$

Conversely, because $X \subset \operatorname{aff}(X)$ and $\operatorname{aff}(X)$ is closed, we have $\operatorname{cl}(X) \subset \operatorname{aff}(X)$, implying that

$$\operatorname{aff}(\operatorname{cl}(X)) \subset \operatorname{aff}(X).$$

We now show that X and $\operatorname{conv}(X)$ have the same affine hull. By using a translation argument if necessary, we assume without loss of generality that X contains the origin, so that both $\operatorname{aff}(X)$ and $\operatorname{aff}(\operatorname{conv}(X))$ are subspaces. Since $X \subset \operatorname{conv}(X)$, evidently $\operatorname{aff}(X) \subset \operatorname{aff}(\operatorname{conv}(X))$. To show the reverse inclusion, let the dimension of $\operatorname{aff}(\operatorname{conv}(X))$ be m, and let x_1, \ldots, x_m be linearly independent vectors in $\operatorname{conv}(X)$ that span $\operatorname{aff}(\operatorname{conv}(X))$. Then every $x \in \operatorname{aff}(\operatorname{conv}(X))$ is a linear combination of the vectors x_1, \ldots, x_m , i.e., there exist scalars β_1, \ldots, β_m such that

$$x = \sum_{i=1}^{m} \beta_i x_i$$

By the definition of convex hull, each x_i is a convex combination of vectors in X, so that x is a linear combination of vectors in X, implying that $x \in \operatorname{aff}(X)$. Hence, $\operatorname{aff}(\operatorname{conv}(X)) \subset \operatorname{aff}(X)$.

(b) Since $X \subset \operatorname{conv}(X)$, clearly $\operatorname{cone}(X) \subset \operatorname{cone}(\operatorname{conv}(X))$. Conversely, let $x \in \operatorname{cone}(\operatorname{conv}(X))$. Then x is a nonnegative combination of some vectors in $\operatorname{conv}(X)$, i.e., for some positive integer p, vectors $x_1, \ldots, x_p \in \operatorname{conv}(X)$, and nonnegative scalars $\alpha_1, \ldots, \alpha_p$, we have

$$x = \sum_{i=1}^{p} \alpha_i x_i$$

Each x_i is a convex combination of some vectors in X, so that x is a nonnegative combination of some vectors in X, implying that $x \in \operatorname{cone}(X)$. Hence $\operatorname{cone}(\operatorname{conv}(X)) \subset \operatorname{cone}(X)$.

(c) Since $\operatorname{conv}(X)$ is the set of all convex combinations of vectors in X, and $\operatorname{cone}(X)$ is the set of all nonnegative combinations of vectors in X, it follows that $\operatorname{conv}(X) \subset \operatorname{cone}(X)$. Therefore

$$\operatorname{aff}(\operatorname{conv}(X)) \subset \operatorname{aff}(\operatorname{cone}(X)).$$

As an example showing that the above inclusion can be strict, consider the set $X = \{(1,1)\}$ in \Re^2 . Then $\operatorname{conv}(X) = X$, so that

$$\operatorname{aff}(\operatorname{conv}(X)) = X = \{(1,1)\},\$$

and the dimension of conv(X) is zero. On the other hand, $cone(X) = \{(\alpha, \alpha) \mid \alpha \ge 0\}$, so that

$$\operatorname{aff}(\operatorname{cone}(X)) = \{(x_1, x_2) \mid x_1 = x_2\},\$$

and the dimension of cone(X) is one.

(d) In view of parts (a) and (c), it suffices to show that

$$\operatorname{aff}(\operatorname{cone}(X)) \subset \operatorname{aff}(\operatorname{conv}(X)) = \operatorname{aff}(X).$$

It is always true that $0 \in \operatorname{cone}(X)$, so $\operatorname{aff}(\operatorname{cone}(X))$ is a subspace. Let the dimension of $\operatorname{aff}(\operatorname{cone}(X))$ be m, and let x_1, \ldots, x_m be linearly independent vectors in $\operatorname{cone}(X)$ that span $\operatorname{aff}(\operatorname{cone}(X))$. Since every vector in $\operatorname{aff}(\operatorname{cone}(X))$ is a linear combination of x_1, \ldots, x_m , and since each x_i is a nonnegative combination of some vectors in X, it follows that every vector in $\operatorname{aff}(\operatorname{cone}(X))$ is a linear combination of some vectors in X. In view of the assumption that $0 \in \operatorname{conv}(X)$, the affine hull of $\operatorname{conv}(X)$ is a subspace, which implies by part (a) that the affine hull of X is a subspace. Hence, every vector in $\operatorname{aff}(\operatorname{cone}(X))$ belongs to $\operatorname{aff}(X)$, showing that $\operatorname{aff}(\operatorname{cone}(X)) \subset \operatorname{aff}(X)$.