MATH4230 Optimization Theory (2017/18) Tutorial 3

Please do the star problem $(*)$ in tutorial class and finish the rest after class. Please hand in your answer sheet to the assignment box in Lady Shaw Building before 6:30 p.m.

1^{*}. Let X be a nonempty convex subset of \mathbb{R}^n , let $f: X \to \mathbb{R}^n$ be a concave function, and let X^* be the set of vectors where f attains a minimum over X, i.e.,

$$
X^* = \{ x^* \in X | f(x^*) = inf_{x \in X} f(x) \}.
$$

Show that if there exist $x_0 \in X^*$, $x_0 \in ri(X)$, then $f \equiv C$ on X, where C is a constant.

Solution 1. Let $x^* \in X^* \bigcap ri(X)$, and let x be any vector in X. By the Prolongation Lemma, there exists a $\gamma > 0$ s.t.

$$
\hat{x} = x^* + \gamma (x^* - x) \in X.
$$

Hence,

$$
x^* = \frac{1}{\gamma + 1}\hat{x} + \frac{\gamma}{\gamma + 1}x.
$$

By the concavity of f , we have

$$
f(x^*) \geqslant \frac{1}{\gamma+1} f(\hat{x}) + \frac{\gamma}{\gamma+1} f(x),
$$

and using $f(\hat{x}) \geq f(x^*)$, $f(x) \geq f(x^*)$, this shows that $f(x) = f(x^*)$.

 \Box

- 2^* . Let C be a nonempty convex set. Show that
	- (a) $cl(C) = cl(ri(C)).$
	- (b) $ri(C) = ri(cl(C)).$
	- (c) Let \overline{C} be another nonempty convex set. Then the following three conditions are equivalent:
		- (i) C and \overline{C} have the same relative interior.
		- (ii) C and \overline{C} have the same closure.
		- (iii) $ri(C) \subset \overline{C} \subset cl(C)$.

Solution 2. (a) Since $ri(C) \subset C$, we have $cl(ri(C)) \subset cl(C)$. Conversely, let $\hat{x} \in cl(C)$. We will show that $\hat{x} \in cl(ri(C))$. Let $x \in ri(C)$ be any point(the existence is ensured by Noemptiness of Relative Interior), and assume $\hat{x} \neq x$ (otherwise we are done). By the Line Segment Principle, we have

$$
\alpha x + (1 - \alpha)\hat{x} \in ri(C), \forall \alpha \in (0, 1].
$$

Thus, \hat{x} is the limit of the sequence

$$
\{x_k = \frac{1}{k}x + (1 - \frac{1}{k})\hat{x}|k = 1, 2, 3 \dots\}
$$

that lies in $ri(C)$, so $\hat{x} \in cl(ri(C)).$

(b) The inclusion $ri(C) \subset ri(cl(C))$ follows from the definition of a relative interior point and the fact $aff(C) = aff(cl(C))$ (the proof of this is left for the reader). To prove the reverse inclusion, let $z \in ri(cl(C))$. We will show that $z \in ri(C)$. There exists an $x \in ri(C)$. We may assume that $x \neq z$ (Otherwise we are done). We use the Prolongation Lemma to choose $\gamma > 0$, with γ sufficiently close to 0 so that the vector

$$
y = z + \gamma(z - x) \in cl(C).
$$

Then we have

$$
z = (1 - \alpha)x + \alpha y
$$

where $\alpha = \frac{1}{\gamma + 1} \in (0, 1)$, so by the Line Segment Principle (applied within the set C), we obtain $z \in ri(C)$.

 (c) We prove this equivalence argument by the following steps:

 $i \rightarrow ii$: part (a). $ii \rightarrow i$: part (b). $i, ii \rightarrow iii$ obviously. $iii \rightarrow ii$ Supppose the condition iii holds. Then by taking closures, we have $cl(ri(C)) \subset$ $(C) \subset cl(C)$, and by using part (a), we obtain $cl(C) \subset cl(\overline{C}) \subset cl(C)$. Hence $cl(C) = cl(C).$ \Box

- 3. Let X be a nonempty set. Show that:
	- (a) X, conv(X), and cl(X) have the same affine hull.
	- (b) $cone(X) = cone(conv(X)).$
	- (c) aff $(\text{conv}(X)) \subset \text{aff}(\text{cone}(X))$. Give an example where the inclusion is strict. i.e., aff(conv(X)) is a strict subset of aff(cone(X)).
	- (d) If the origin belongs to conv(X), then aff(conv(X)) $=$ aff(cone(X)).

Solution 3.

(a) We first show that X and $cl(X)$ have the same affine hull. Since $X \subset cl(X)$, there holds

$$
\text{aff}(X) \subset \text{aff}(\text{cl}(X)).
$$

Conversely, because $X \subset \text{aff}(X)$ and $\text{aff}(X)$ is closed, we have $\text{cl}(X) \subset \text{aff}(X)$, implying that

$$
\text{aff} (\text{cl}(X)) \subset \text{aff}(X).
$$

We now show that X and $conv(X)$ have the same affine hull. By using a translation argument if necessary, we assume without loss of generality that X contains the origin, so that both $\text{aff}(X)$ and $\text{aff}(conv(X))$ are subspaces. Since $X \subset \text{conv}(X)$, evidently aff $(X) \subset \text{aff}(\text{conv}(X))$. To show the reverse inclusion, let the dimension of aff $(\text{conv}(X))$ be m, and let x_1, \ldots, x_m be linearly independent vectors in conv (X) that span aff $(\text{conv}(X))$. Then every $x \in \text{aff}(\text{conv}(X))$ is a linear combination of the vectors x_1, \ldots, x_m , i.e., there exist scalars β_1, \ldots, β_m such that

$$
x = \sum_{i=1}^{m} \beta_i x_i
$$

By the definition of convex hull, each x_i is a convex combination of vectors in X, so that x is a linear combination of vectors in X, implying that $x \in \text{aff}(X)$. Hence, aff $(\text{conv}(X)) \subset \text{aff}(X)$.

(b) Since $X \subset \text{conv}(X)$, clearly $\text{cone}(X) \subset \text{cone}(\text{conv}(X))$. Conversely, let $x \in \text{cone}(\text{conv}(X)).$ Then x is a nonnegative combination of some vectors in conv(X), i.e., for some positive integer p, vectors $x_1, \ldots, x_p \in \text{conv}(X)$, and nonnegative scalars $\alpha_1, \ldots, \alpha_p$, we have

$$
x = \sum_{i=1}^{p} \alpha_i x_i
$$

Each x_i is a convex combination of some vectors in X, so that x is a nonnegative combination of some vectors in X, implying that $x \in \text{cone}(X)$. Hence $cone(conv(X)) \subset cone(X).$

(c) Since conv(X) is the set of all convex combinations of vectors in X, and $cone(X)$ is the set of all nonnegative combinations of vectors in X, it follows that $conv(X) \subset cone(X)$. Therefore

$$
\textnormal{aff}\bigl(\textnormal{conv}(X)\bigr)\subset\textnormal{aff}\bigl(\textnormal{cone}(X)\bigr).
$$

As an example showing that the above inclusion can be strict, consider the set $X = \{(1,1)\}\$ in \mathbb{R}^2 . Then conv $(X) = X$, so that

$$
\text{aff}\big(\text{conv}(X)\big)=X=\big\{(1,1)\big\},\
$$

and the dimension of conv (X) is zero. On the other hand, cone $(X) = \{(\alpha, \alpha) \mid$ $\alpha \geq 0$, so that

$$
\text{aff}(\text{cone}(X)) = \{(x_1, x_2) \mid x_1 = x_2\},\
$$

and the dimension of $cone(X)$ is one.

(d) In view of parts (a) and (c), it suffices to show that

$$
\text{aff}(\text{cone}(X)) \subset \text{aff}(\text{conv}(X)) = \text{aff}(X).
$$

It is always true that $0 \in \text{cone}(X)$, so aff $(\text{cone}(X))$ is a subspace. Let the dimension of aff(cone(X)) be m, and let x_1, \ldots, x_m be linearly independent vectors in cone(X) that span aff $(\text{cone}(X))$. Since every vector in aff $(\text{cone}(X))$ is a linear combination of x_1, \ldots, x_m , and since each x_i is a nonnegative combination of some vectors in X, it follows that every vector in $aff(cone(X))$ is a linear combination of some vectors in X. In view of the assumption that $0 \in \text{conv}(X)$, the affine hull of $conv(X)$ is a subspace, which implies by part (a) that the affine hull of X is a subspace. Hence, every vector in aff $(\text{cone}(X))$ belongs to aff (X) , showing that $\text{aff}(\text{cone}(X)) \subset \text{aff}(X)$.